Probability Cheatsheet v2.0

Compiled by William Chen (http://wzchen.com) and Joe Blitzstein, with contributions from Sebastian Chiu, Yuan Jiang, Yuqi Hou, and Jessy Hwang. Material based on Joe Blitzstein's (@stat110) lectures http://stat110.net) and Blitzstein/Hwang's Introduction to Probability textbook (http://bit.ly/introprobability). Licensed under CC BY-NC-SA 4.0 Please share comments, suggestions, and errors at http://github.com/wzchen/probability_cheatsheet

Last Updated September 4, 2015

Counting

Multiplication Rule

Let's say we have a compound experiment (an experiment with multiple components). If the 1 st component has n_{1} possible outcomes, the 2nd component has n_{2} possible outcomes, ..., and the r th component has n_{r} possible outcomes, then overall there are $n_{1} n_{2} \ldots n_{r}$ possibilities for the whole experiment.

Sampling Table

The sampling table gives the number of possible samples of size k out of a population of size n, under various assumptions about how the sample is collected.

	Order Matters	Not Matter
With Replacement	n^{k}	$\binom{n+k-1}{k}$
Without Replacement	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$

Naive Definition of Probability

If all outcomes are equally likely, the probability of an event A happening is:

$$
P_{\text {naive }}(A)=\frac{\text { number of outcomes favorable to } A}{\text { number of outcomes }}
$$

Thinking Conditionally

Independence

Independent Events A and B are independent if knowing whether A occurred gives no information about whether B occurred. More formally, A and B (which have nonzero probability) are independent if and only if one of the following equivalent statements holds:

$$
\begin{aligned}
P(A \cap B) & =P(A) P(B) \\
P(A \mid B) & =P(A) \\
P(B \mid A) & =P(B)
\end{aligned}
$$

Conditional Independence A and B are conditionally independent given C if $P(A \cap B \mid C)=P(A \mid C) P(B \mid C)$. Conditional independence does not imply independence, and independence does not imply conditional independence.

Unions, Intersections, and Complements
De Morgan's Laws A useful identity that can make calculating probabilities of unions easier by relating them to intersections, and vice versa. Analogous results hold with more than two sets.

$$
\begin{aligned}
& (A \cup B)^{c}=A^{c} \cap B^{c} \\
& (A \cap B)^{c}=A^{c} \cup B^{c}
\end{aligned}
$$

Joint, Marginal, and Conditional
Joint Probability $P(A \cap B)$ or $P(A, B)$ - Probability of A and B. Marginal (Unconditional) Probability $P(A)$ - Probability of A. Conditional Probability $P(A \mid B)=P(A, B) / P(B)$ - Probability of A, given that B occurred.
Conditional Probability is Probability $P(A \mid B)$ is a probability function for any fixed B. Any theorem that holds for probability also holds for conditional probability.

Probability of an Intersection or Union
Intersections via Conditioning

$$
P(A, B)=P(A) P(B \mid A)
$$

$P(A, B, C)=P(A) P(B \mid A) P(C \mid A, B)$
Unions via Inclusion-Exclusion

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

$$
P(A \cup B \cup C)=P(A)+P(B)+P(C)
$$

$$
-P(A \cap B)-P(A \cap C)-P(B \cap C)
$$

$$
+P(A \cap B \cap C)
$$

Simpson's Paradox

is possible to have

$$
P(A \mid B, C)<P\left(A \mid B^{c}, C\right) \text { and } P\left(A \mid B, C^{c}\right)<P\left(A \mid B^{c}, C^{c}\right)
$$

$$
\text { yet also } P(A \mid B)>P\left(A \mid B^{c}\right) \text {. }
$$

Law of Total Probability (LOTP)
Let $B_{1}, B_{2}, B_{3}, \ldots B_{n}$ be a partition of the sample space (i.e., they are disjoint and their union is the entire sample space).
$P(A)=P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)+\cdots+P\left(A \mid B_{n}\right) P\left(B_{n}\right)$
$P(A)=P\left(A \cap B_{1}\right)+P\left(A \cap B_{2}\right)+\cdots+P\left(A \cap B_{n}\right)$
For LOTP with extra conditioning, just add in another event C !

$$
P(A \mid C)=P\left(A \mid B_{1}, C\right) P\left(B_{1} \mid C\right)+\cdots+P\left(A \mid B_{n}, C\right) P\left(B_{n} \mid C\right)
$$

$$
P(A \mid C)=P\left(A \cap B_{1} \mid C\right)+P\left(A \cap B_{2} \mid C\right)+\cdots+P\left(A \cap B_{n} \mid C\right)
$$

Special case of LOTP with B and B^{c} as partition:

$$
\begin{aligned}
& P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right) \\
& P(A)=P(A \cap B)+P\left(A \cap B^{c}\right)
\end{aligned}
$$

Bayes' Rule
Bayes' Rule, and with extra conditioning (just add in C !)

$$
\begin{gathered}
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \\
P(A \mid B, C)=\frac{P(B \mid A, C) P(A \mid C)}{P(B \mid C)}
\end{gathered}
$$

We can also write

$$
P(A \mid B, C)=\frac{P(A, B, C)}{P(B, C)}=\frac{P(B, C \mid A) P(A)}{P(B, C)}
$$

Odds Form of Bayes' Rule

$$
\frac{P(A \mid B)}{P\left(A^{c} \mid B\right)}=\frac{P(B \mid A)}{P\left(B \mid A^{c}\right)} \frac{P(A)}{P\left(A^{c}\right)}
$$

The posterior odds of A are the likelihood ratio times the prior odds.

Random Variables and their Distributions

PMF, CDF, and Independence
Probability Mass Function (PMF) Gives the probability that a discrete random variable takes on the value x.

$$
p_{X}(x)=P(X=x)
$$

The PMF satisfies

$$
p_{X}(x) \geq 0 \text { and } \sum_{x} p_{X}(x)=1
$$

