Chapter 3: Practice/review problems
The collection of problems listed below contains questions taken from previous MA123 exams.

Limits and one-sided limits

[1]. Suppose $H(t)=t^{2}+5 t+1$. Find the limit $\lim _{t \rightarrow 2} H(t)$.
(a) 15
(b) 1
(c) 9
(d) 6
(e) $2 t+5$
[2]. Find the limit $\lim _{t \rightarrow 2} \frac{t^{2}-4}{t-2}$.
(a) 2
(b) 4
(c) 6
(d) 8
(e) The limit does not exist
[3]. Find the limit $\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-25}$.
(a) $-\frac{1}{10}$
(b) $-\frac{1}{5}$
(c) 0
(d) $\frac{1}{5}$
(e) $\frac{1}{10}$
[4]. Compute $\lim _{x \rightarrow 3} \frac{x^{2}-7 x+12}{x-3}$.
(a) 0
(b) 1
(c) -1
(d) 2
(e) The limit does not exist
[5]. Find $\lim _{r \rightarrow 1} \frac{r^{2}-3 r+2}{r-1}$.
(a) 1
(b) 0
(c) -1
(d) 2
(e) The limit does not exist
[6]. Find the limit or state that it does not exist: $\lim _{x \rightarrow 4} \frac{x^{2}+x-20}{x-4}$.
(a) 8
(b) -20
(c) -15
(d) 9
(e) Does Not Exist
[7]. Compute $\lim _{x \rightarrow 0}\left(\frac{2 x^{2}-3 x+4}{x}+\frac{5 x-4}{x}\right)$.
(a) 5
(b) 4
(c) 3
(d) 2
(e) 1
[8]. Compute $\lim _{h \rightarrow 0} \frac{(h+4)^{2}-16}{h}$.
(a) 4
(b) 5
(c) 6
(d) 7
(e) 8
[9]. Find the limit $\lim _{t \rightarrow 0^{+}} \frac{\sqrt{t^{3}}}{\sqrt{t}}$.
(a) 0
(b) 1
(c) 2
(d) 3
(e) The limit does not exist
[10]. Find the limit as x tends to 0 from the left $\lim _{x \rightarrow 0^{-}} \frac{|x|}{2 x}$.
(a) $1 / 3$
(b) $1 / 2$
(c) 0
(d) $-1 / 2$
(e) $-1 / 3$
[11]. Find the limit $\lim _{h \rightarrow 0^{-}} \frac{|4 h|}{h}$.
(Hint: Evaluate the quotient for some negative values of h close to 0 .)
(a) 0
(b) 2
(c) $\quad-2$
(d) 4
(e) $\quad-4$
[12]. Compute $\lim _{x \rightarrow 3^{-}} \frac{|4 x-12|}{x-3}$.
(a) 4
(b) -4
(c) 0
(d) Doesn't exist (e) Cannot be determined
[13]. Find the limit of $f(x)$ as x tends to 2 from the left if $\quad f(x)=\left\{\begin{array}{cll}1+x^{2} & \text { if } & x<2 \\ x^{3} & \text { if } & x \geq 2\end{array}\right.$
(a) 5
(b) 6
(c) 7
(d) 8
(e) 9
[14]. Find the limit of $f(x)$ as x tends to 2 from the left if $\quad f(x)=\left\{\begin{array}{lll}x^{3}-2 & \text { if } & x \geq 2 \\ 1+x^{2} & \text { if } & x<2\end{array}\right.$
(a) 5
(b) 6
(c) 7
(d) 8
(e) Does not exist
[15]. For the function $f(x)= \begin{cases}4 x^{2}-1 & \text { if } x<1 \\ 3 x+2 & \text { if } x \geq 1\end{cases}$
Find $\lim _{x \rightarrow 1^{+}} f(x)$.
(a) 5
(b) 3
(c) 1
(d) 0
(e) The limit does not exist
[16]. Let $\quad f(x)= \begin{cases}x^{2}+8 x+15 & \text { if } x \leq 2 \\ 4 x+7 & \text { if } x>2 .\end{cases}$
Find $\lim _{x \rightarrow 2^{+}} f(x)$.
(a) 15
(b) 20
(c) 30
(d) 35
(e) The limit does not exist
[17]. Let $\quad f(x)= \begin{cases}-5 x+7 & \text { if } x<3 \\ x^{2}-16 & \text { if } x \geq 3 .\end{cases}$
Find $\lim _{x \rightarrow 3^{+}} f(x)$.
(a) 6
(b) $\quad-6$
$\begin{array}{ll}\text { (c) } & -7\end{array}$
(d) -8
(e) The limit does not exist
[18]. Suppose $f(t)=\left\{\begin{array}{ccc}-t & \text { if } t<1 \\ t^{2} & \text { if } t \geq 1\end{array}\right.$
Find the limit $\quad \lim _{t \rightarrow 1} f(t)$.
(a) -1
(b) 1
(c) 0
(d) 2
(e) The limit does not exist
[19]. Suppose $f(t)=\left\{\begin{array}{cl}(-t)^{2} & \text { if } t<1 \\ t^{3} & \text { if } t \geq 1\end{array}\right.$
Find the limit $\lim _{t \rightarrow 1} f(t)$.
(a) $\quad-2$
(b) -1
(c) 1
(d) 2
(e) The limit does not exist
[20]. Suppose the total cost, $C(q)$, of producing a quantity q of a product equals a fixed cost of $\$ 1000$ plus $\$ 3$ times the quantity produced. So total cost in dollars is

$$
C(q)=1000+3 q .
$$

The average cost per unit quantity, $A(q)$, equals the total cost, $C(q)$, divided by the quantity produced, q. Find the limiting value of the average cost per unit as q tends to 0 from the right. In other words find

$$
\lim _{q \rightarrow 0^{+}} A(q)
$$

(a) 0
(b) 3
(c) 1000
(d) 1003
(e) The limit does not exist

Limits at infinity

[21]. Find the limit $\lim _{t \rightarrow \infty} \frac{3}{1+t^{2}}$.
(a) 0
(b) 1
(c) 2
(d) 3
(e) The limit does not exist
[22]. Find the limit $\lim _{x \rightarrow \infty} \frac{x^{2}+x+1}{(3 x+2)^{2}}$.
(a) 1
(b) $1 / 3$
(c) 0
(d) $1 / 9$
(e) The limit does not exist
[23]. Find the limit $\lim _{s \rightarrow \infty} \frac{s^{4}+s^{2}+13}{s^{3}+8 s+9}$.
(a) 0
(b) 1
(c) 2
(d) 3
(e) The limit does not exist
[24]. Find the limit $\lim _{x \rightarrow \infty} \frac{2 x^{2}}{(x+2)^{3}}$.
(a) 0
(b) 1
(c) 2
(d) 3
(e) The limit does not exist
[25]. Suppose the total cost, $C(q)$, of producing a quantity q of a product is given by the equation

$$
C(q)=5000+5 q .
$$

The average cost per unit quantity, $A(q)$, equals the total cost, $C(q)$, divided by the quantity produced, q. Find the limiting value of the average cost per unit as q tends to ∞. In other words find

$$
\lim _{q \rightarrow \infty} A(q)
$$

(a) 5
(b) 6
(c) 5000
(d) 5006
(e) The limit does not exist

Continuity and differentiability

[26]. Suppose $f(t)=\left\{\begin{array}{cc}B t & \text { if } t \leq 3 \\ 5 & \text { if } t>3\end{array}\right.$
Find a value of B such that the function $f(t)$ is continuous for all t.
(a) $3 / 5$
(b) $4 / 5$
(c) $5 / 3$
(d) $5 / 4$
(e) $5 / 2$
[27]. Suppose that $f(x)= \begin{cases}A+x & \text { if } x<2 \\ 1+x^{2} & \text { if } x \geq 2\end{cases}$
Find a value of A such that the function $f(x)$ is continuous at the point $x=2$.
(a) $A=8$
(b) $A=1$
(c) $\quad A=2$
(d) $\quad A=3$
(e) $A=0$
[28]. Suppose $f(t)=\left\{\begin{array}{ccc}t & \text { if } t \leq 3 \\ A+\frac{t}{2} & \text { if } t>3\end{array}\right.$
Find a value of A such that the function $f(t)$ is continuous for all t.
(a) $1 / 2$
(b) 1
(c) $3 / 2$
(d) 2
(e) $5 / 2$
[29]. Consider the function $\quad f(x)=\left\{\begin{array}{ll}2 x^{2}+3 & \text { if } x \leq 3 \\ 3 x+B & \text { if } x>3\end{array}\right.$.
Find a value of B such that $f(x)$ is continuous at $x=3$.
(a) 6
(b) 9
(c) 12
(d) 15
(e) There is no such value of B.
[30]. Find all values of a such that the function $f(x)=\left\{\begin{array}{ll}x^{2}+2 x & \text { if } x<a \\ -1 & \text { if } x \geq a\end{array}\right.$ is continuous everywhere.
(a) $a=-1$ only
(b) $a=-2$ only
(c) $\quad a=-1$ and $a=1$
(d) $a=-2$ and $a=2$
(e) all real numbers
[31]. Which of the following is true for the function $f(x)$ given by

$$
f(x)=\left\{\begin{array}{lll}
2 x-1 & \text { if } & x<-1 \\
x^{2}+1 & \text { if } & -1 \leq x \leq 1 \\
x+1 & \text { if } & x>1
\end{array}\right.
$$

(a) f is continuous everywhere
(b) $\quad f$ is continuous everywhere except at $x=-1$ and $x=1$
(c) f is continuous everywhere except at $x=-1$
(d) f is continuous everywhere except at $x=1$
(e) None of the above
[32]. Which of the following is true for the function $f(x)=|x-1|$?
(a) $\quad f$ is differentiable at $x=1$ and $x=2$.
(b) $\quad f$ is differentiable at $x=1$, but not at $x=2$.
(c) f is differentiable at $x=2$, but not at $x=1$.
(d) f is not differentiable at either $x=1$ or $x=2$.
(e) None of the above.

